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Abstract. It is known that there is a four-parameter family of point interactions in one-dimensional
quantum mechanics. We point out that, as far as physics is concerned, it is sufficient to use three
of the four parameters. The fourth parameter is redundant. The apparent violation of time-reversal
invariance in the presence of the fourth parameter is an artifact.

Including the familiarδ-function potential, there is a four-parameter family of point interactions
in one-dimensional quantum mechanics [1–10]. It is said that, if time-reversal invariance is
imposed, the number of the parameters that specify the interactions is reduced to three [8–10].
The purpose of this letter is to point out that the three-parameter family actually exhausts all
physics of the point interactions in one dimension. The fourth parameter introduces no new
physics beyond that of the three-parameter family. This implies that theapparentviolation
of time-reversal invariance in the presence of the fourth parameter is an artifact. Indeed, the
transformation of the wavefunction under time-reversal can be redefined such that the point
interaction with the fourth parameter also conforms to time-reversal invariance.

Let us consider a particle interacting with a point interaction atx = 0. It is understood
that the particle has no spin. The point interaction is such that it is zero everywhere except
at x = 0. The point interaction can be interpreted in terms of self-adjoint extension of the
nonrelativistic kinetic energy operator−(h̄2/2m) d2/dx2 wherem is the mass of the particle
concerned†. In the following we use units in which ¯h2/2m = 1. The point interaction can be
expressed in terms of the boundary condition on the wavefunction atx = 0. The condition in
its most general form can be written as(

ψ ′(+0)
ψ(+0)

)
= U

(
ψ ′(−0)
ψ(−0)

)
(1)

U = eiθ

(
α β

δ γ

)
αγ − βδ = 1 (2)

whereψ ′(x) = dψ(x)/dx andα, β, γ , δ andθ are all real constants. Amongα, β, γ andδ,
three are independent. Thus we have a four-parameter family of point interactions.

† To be more precise, we are referring to an extension of the kinetic energy operator that is restricted to the domain
of C∞0 (R\{0}) [2]. We focus on a self-adjoint extension that links the two half-axes ofx > 0 andx < 0. We do not
consider the case in which the two half-axes are completely disjoint.
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It would be useful to relate the parameters that we are using to other sets of parameters
that have appeared in the literature. Carreauet al [5] and Carreau [6] used four real parameters
α, β, ρ and θ . Their α, β and θ are different from ours. In terms of their notation,U is
expressed as

U = e−iθ

(
1 + β

ρ
α + β + αβ

ρ
1
ρ

1 + α
ρ

)
. (3)

Albeverioet al [9] recently useda, b, c andθ , in terms of whichU becomes

U = eiθ

(
d c

b a

)
ad − bc = 1 (4)

In this letter we use the notation of (1) and (2) throughout.
Let us require that the system is invariant under time reversal. According to the standard

interpretation, if the wavefunctionψ(x, t) is an admissible solution of the time-dependent
Schr̈odinger equation of the system, then its complex conjugate witht replaced by−t ,
ψ∗(x,−t), is also admissible; see, e.g., [11]. The latter describes the motion backward in time.
Alternatively, if we consider a stationary state, we should be able to choose the wavefunction
to be real. It then follows that the factor eiθ of the boundary condition has to be real, i.e.θ = 0
(moduloπ ). Thus we are left with three independent parameters.

In [8], we worked out the transmission and bound state problems for the three-parameter
family of the point interactions that conform to time-reversal invariance. Following [2,3], we
chose parameterθ such that eiθ = −1 in [8]. Let us now re-examine the transmission and
bound state problems with the four-parameter family (with arbitraryθ ) and see if we can find
anything new beyond what is known with the three-parameter family. If the wave is incident
from the left, the wavefunction can be written as

ψL(x) =
{

eikx +RLe−ikx for x < 0
TLeikx for x > 0

(5)

wherek = √E andE > 0 is the energy. The subscript L refers to the situation when the wave
is incident from the left. TheψR(x) can be written down similarly.

Imposing the boundary condition (1) onψL andψR, we obtain

TL = 2ikeiθ /D TR = 2ike−iθ /D (6)

RL = [β + δk2 + ik(α − γ )]/D (7)

RR = [β + δk2 − ik(α − γ )]/D (8)

D = −β + δk2 + ik(α + γ ). (9)

As expected,TL 6= TR when time-reversal invariance (in its usual interpretation) does not
hold [12,13]. Note, however, that|TL |, |TR|, RL andRR are all independent ofθ .

Next let us examine the bound state. IfD = 0 for k = iκ (κ > 0), there is a bound state
of energy−κ2. The wavefunction of the bound state takes the form

ψ(x) =
{
ψ(+0)e−κx for x > 0

ψ(−0)eκx for x < 0
(10)

where
ψ(+0)

ψ(−0)
= −eiθ

(
α +

β

κ

)
= eiθ (γ + κδ). (11)

It can be shown that|ψ(+0)/ψ(−0)| = 1 if and only ifα = γ .
If we put eiθ = −1, we recover the results that were given in [8]. If we compare the results

that we have just derived with the corresponding ones of [8], it is clear that no new physics has
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emerged. For a given set of values of the three parametersα, β andγ , the transmission and
reflection probabilities are the same as before. They are independent of the fourth parameterθ .
For the bound state, the energy and the probability density|ψ(x)|2 are also independent ofθ .
All that has changed, when the complex factor eiθ was introduced into the boundary condition,
is essentially the following. If we let the wavefunction in the region ofx < 0 remain the
same, the wavefunction forx > 0 is multiplied by eiθ . The factor eiθ of TL andψ(+0)/ψ(−0)
can be understood in this way. ForTR, one can keep the wavefunction forx > 0 the same
and multiply that forx < 0 with e−iθ . This constant phase factor e±iθ does not add any new
physics. In evaluating matrix elements of any physical quantities, this phase factor disappears.
In no way does the wavefunction forx > 0 interfere with that forx < 0.

A time-dependent nonstationary state can be expressed as a superposition of stationary
states. For example, let us consider a situation such that a wavepacket is incident from the
left. The wavefunction, which is time dependent, can be constructed as a superposition of
ψL(x) times e−ik2t with an appropriate weight function ofk. In such a linear combination of
stationary states, however, the wavefunctions forx > 0 and those forx < 0 are separately
superposed. Hence the phase factor eiθ has no interesting effect.

If the parameterθ is as unimportant as we have indicated above, it must be redundant.
We can show that the apparent violation of time-reversal invariance that is caused by the
complex factor eiθ of the boundary condition is actually an artifact. Under time-reversal
transformationt →−t , we usually replace the wavefunctionψ(x, t)withψ∗(x,−t) so that the
time-dependent Schrödinger equation remains the same in form. It is clear that this prescription
as such does not work in the presence of the complex boundary condition. However, if we
transform the wavefunction as

ψ(x, t)→ χ(x,−t) = f (x)ψ∗(x,−t) (12)

where

f (x) =
{

1 for x < 0
e2iθ for x > 0

(13)

the Schr̈odinger equation does remain the same in form andχ(x,−t) satisfies the boundary
condition (1). This transformation is anti-unitary [11]. The wavefunctionχ(x,−t) describes
the development of the system, backward in time. For the wavefunctions of stationary states
like ψL(x) of (5) andψ(x) of (10), the transformation reads

ψ(x)→ χ(x) = f (x)ψ∗(x) (14)

while the time-dependent factor of the wavefunction remains the same: e−iEt → eiE(−t).
With this new prescription the system that is subject to the complex boundary condition

(1) is invariant under time-reversal transformation. This situation reminds us of the case of a
particle with spin interacting with a magnetic field. If we simply transform the wavefunction
asψ(x, t)→ ψ∗(x,−t), the Scḧodinger equation is not invariant. One has to appropriately
rearrange the spin components of the wavefunction [11].

Let us quote the remark that we made earlier regarding the time-reversal invariance of
the point interactions in one dimension and the unitarity of theS matrix that appears in the
transmission-reflection problem: see the last paragraph of section 3 of [8]. It was essentially
the following:

If eiθ is not real, thenTL 6= TR which implies that time-reversal invariance does not
hold. Unitarity however holds even when eiθ is not real. We find this feature very
interesting in the following sense. SupposeV (x) of the Hamiltonian is an ordinary
finite potential. Time-reversal invariance requires thatV (x) is real. Then unitarity
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holds. On the other hand, unitarity requires thatV (x) is real. Then time-reversal
invariance ensues. Thus time-reversal invariance and unitarity are inseparable for a
finite potential. For generalized point interactions, however, we can have a situation
such that time-reversal invariance is violated, yet unitarity is valid.

We withdraw the last sentence. Within the extended scheme of time-reversal transformation
that we have proposed above, all point interactions conform to time-reversal invaiance. We
can haveTL 6= TR within the extended time-reversal invariance. Unitarity and time-reversal
invariance remain inseparable.

In this letter we focused on the nonrelativistic case with the Schrödinger equation. Let
us add that exactly the same situation holds for the relativistic case with the Dirac equation in
one dimension. In this connection, see section 5 of [8]. There is a four-parameter family of
point interactions for the Dirac equation. As far as physics is concerned, however, the fourth
parameter of the point interactions is again redundant. The three-parameter family represents
all of the physically interesting features of the point interations in one dimension. The apparent
violation of time-reversal invariance in the presence of the complex boundary condition with
the fourth parameter is an artifact. The time-reversal transformation of the wavefunction can
be extended such that, in the presence of the fourth parameter, the Dirac equation remains
invariant.

YN is grateful to the Universidade de São Paulo and the Instituto de Fı́sica Téorica of
Universidade Estadual Paulista for warm hospitality extended to him during his visit in 1998.
This work was supported by the Fundação de Amparòa Pesquisa do Estado de São Paulo
(FAPESP) and the Natural Sciences and Engineering Research Council of Canada.

Note added in proof. Equations (6)–(9) were derived earlier by Chernoff and Hughes: Chernoff P R and Hughes R J
1993J. Func. Anal.11197.
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